Playing Minecraft with Efficient Deep Q-Learning from Demonstrations

Fan Yang, Keyu Li, Chenming Li, Zhaoting Li, Lin Shao, Jiankun Wang
Team: CU-SF

Abstract

In MineRL Competition 2020, participants are challenged to solve complex and hierarchical tasks with sparse rewards using human demonstrations without having access to human-readable actions.

We approach this task by implementing some technical improvements to the DQfD algorithm, in order to better leverage the human demonstration data and realize efficient learning from demonstrations. The key techniques we use are:
- DQfD with some tricks in implementation, and
- Important action clustering.

We achieve 4-th place in Round 1.

Performance

Average score: 6.47 (ranked 4-th in Round 1)

In a total of 100 episodes, the agent can complete the following tasks:

- Traverse the crafting-tree by harvesting resources and crafting items, and to finally obtain a diamond, using:
 - 8 million interactions in the game (provided by the MineRL simulator)
 - 60 million frames of human demonstrations

No human-readable actions are provided in 2020.

Challenge Description

MineRL competition 2020:

Participants compete to develop sample-efficient RL & IL algorithms to complete a hierarchical crafting-tree by harvesting resources and crafting items, and to finally obtain a diamond, using:
- 8 million interactions in the game (provided by the MineRL simulator)
- 60 million frames of human demonstrations

No human-readable actions are provided in 2020.

Important Action Clustering

Process the human demonstration dataset to get important action set:
- Calculate the current step’s reward, value function and cumulative reward
- Select the steps with instant reward >0 and value <20 to do K-means clustering → 10 important actions
- Select other steps with cumulative reward <20 to do K-means clustering → 20 less important actions
- The resulting 30 actions are clustered again to form the final action space

Conclusion

On the basis of the DQfD algorithm, we incorporate some technical improvements to better leverage the human demonstration data and realize efficient learning from demonstrations, and achieve good performance in playing Minecraft.